小学数学教案模板锦集十篇
在教学工作者实际的教学活动中,常常要写一份优秀的教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么写才合适呢?下面是小编为大家收集的小学数学教案10篇,仅供参考,欢迎大家阅读。
小学数学教案 篇11.使学生会口算整十数除整十、几百几十的数(商一位数)。
2.使学生掌握两三位数除以两位数的计算方法。
3.使学生经历探索过程,了解商的变化规律。
4.使学生能够结合具体情境进行除法估算,并说明估算的思路。
5.使学生能够运用所学的知识解决简单的实际问题,感受数学在生活中的作用。
教材说明
除数是两位数的除法,是小学生学习整数除法的最后阶段,它是在学生学习了多位数乘一位数、除数是一位数的除法的基础上进行教学的。本单元主要内容有:口算除法、笔算除法。本单元教材内容的编排加大了教学步子,例题从原义务教材的16个减少为6个,留给学生更大的探索和思考的空间。
教材内容安排如下:
用整十数除整十数、几百几十数的口算,在日常生活中经常用到,同时又是学习除数是两位数笔算除法的重要基础。因此教材仍保留了原义务教材这部分口算内容,并把它安排在笔算之前教学。
学生在前面学习除数是一位数的笔算除法时,已经掌握了笔算除法的基本方法,如除的过程中要看被除数的前一位或前两位,商的书写位置、余数必须比除数小等。除数是两位数除法的计算原理与除数是一位数的除法相同,只是试商的难度加大。在用一位数除时,利用乘法口诀就可以求出一位恰当的商。而在用两位数除的过程中,要确定一位商是几,不仅和除法十位上的数有关,而且还和除数个位上的数有关,计算过程比较复杂有时需要试两三次才能求出一位恰当的商。因此,学习除数是两位数除法的关键是引导学生掌握试商方法,这也是本单元教学的难点。
为了解决试商这个关键问题,教材按照计算的难易程度分两段编排:①商是一位数。主要解决商的书写位置、除的顺序、突出基本的试商方法,帮助学生理解笔算的算理。②商两位数。让学生将除的过程、试商方法迁移至此。
对于试商的方法,本单元主要采用“四舍五入”法,即用“四舍五入”的方法把除数看着与它接近的整十数去试除被除数。这种试商方法学生比较容易掌握,并且在大多数情况下,试一两次就能确定出一位商。在教学一般的试商方法的基础上,教材还注意教学在特殊情况下,灵活地运用试商方法。
本单元加强了“解决问题”的教学。首先,把计算内容置于实际生活的情境之中,如给书打包、看书、喂猪,寄特快专递等。让学生在现实情境中理解计算的意义和作用,探讨计算方法。之后,为学生提供丰富、有趣、有意义的、联系生活的情境材料,让学生发现、提出问题,并运用所学计算方法解决问题。让学生感受数学与现实生活的密切联系,同时培养用数学解决问题的能力。
教学建议
1.让学生在现实情境中探索计算方法。
计算知识是人们在长期生产实践中逐步发展起来的,原本是十分生动的数学活动。把计算教学置入现实情境之中,把探讨计算方法的活动与解决实际问题融于一体,促使学生积极主动地参与学习活动,经历除法计算方法形成的过程,还数学以本来面目,这正是促进学生的发展所需要的教学。教材为学生学习除法计算提供了丰富的素材。教学时,应利用教材提供的资源,或结合当地实际选择学生熟悉的事例,创设生动的具体情境,让学生经历发现、提出数学问题、探索计算方法,解决所提数学问题的全过程,使计算教学成为学生丰富多彩的学习活动。这样,既有利于学生理解、掌握计算方法,又可以增强学生学习数学的兴趣。同时,有利于培养学生从数量观察身边事物的兴趣和习惯,促使学生形成计算意识。
2.让学生主动探索计算方法。
以往的计算教学,把总结、记忆计算法则作为重要环节。当前的数学课程改革,强调让学生在现实情境中理解概念和法则,避免死记硬背。本单元教材不仅为学生提供了探索除法口算、笔算的现实问题情境,而且为学生创设了自主探索、合作交流的空间。教学时,要放手让学生尝试、探讨口算、笔算方法。在此基础上,适时组织讨论、交流,提升学生对计算过程的认识,完善学生对算理的理解。学生在主动探索中经历除法计算方法的形成过程,既可以加深对计算方法的理解,又能使学生逐步学会用数学解决问题。给学生创设主动探索数学知识的空间,为学生蠃得不断体验成功的机会,将有效地促进学生全面发展。
3.本单元可用15课时进行教学。
三年级数学教案——《一位数除两位数商是两位数的笔算除法》
教学目标:
1.使学生在理解算理的基础上,初步学会一位数除两位数,商是两位数的笔算方法;
2.进一步培养学生的计算能力,动手操作能力和初步概括能力。
教学重点:
一位数除两位数,商是两位数的笔算方法。
教学难点:
让学生理解算理,掌握除法算式的演算格式。
教学过程:
一、沟通旧知,建立联系1、口算
600÷627÷3240÷8160÷4
2、笔算
3)99)37
二、创设情景,导入新课
1.出示P19植树情境图,让学生说图意。
2.引导观察:图中告诉我们哪些信息?根据这些信息可以提出什么问题?怎样列式?(根据学生的回答师板演)
42÷252÷2
3.师:42÷2等于多少(生:42÷2=21)
你是怎么想的?
(生:40÷2=202÷2=120+1=21)
同学们会口算出答案,那么怎样用竖式计算呢?(揭示课题)板书:一位数除两位数。
三、自主探索,领悟算法
1.教学例142÷2=21
(1)用竖式计算,你们会吗?试试看
(2)比较一下,你喜欢哪一种算法?说说理由。
学生发表意见:(学生多数会喜欢地一种算法,简单、竖式短,很少有学生喜欢第二种也就是课本例题的形式)
师:其实第二种方法有自己的优势,它能让大家很清楚地看出计算过程。
(3)师边用电脑演示边讲解:笔算除法的计算顺序和口算一样,要从被除数的最高位除起。请哪位用第二种方法做的`同学上来讲解一下。(师配合补充)
(4)让学生质疑
(还会有一部分学生会提出第一种竖式也很清楚地看出计算过程.)
师:现在就请同学们用自己喜欢的方法列竖式算52÷2
2.教学例2:
52÷2
(1)学生独立计算后反馈。
第一种第二种
2626
2)522)52
524
……此处隐藏13723个字……(1)小明栽了18棵杨树和14棵柳树,他一共栽了多少棵树?
(2)小敏做了25朵红花,做的黄花比红花多5朵.做黄花多少朵?
(3)赵强读一本书,已经读了46页,还有58页没读,这本书共有多少页?
二、学习新课
师:我们已经学过了加法的计算方法,今天要在学加法知识的基础上,明确概括出加法的意义,并且能应用它解答实际问题.(板书:加法的意义和运算定律)
1.教学加法的意义.
(1)例 一列火车从北京过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?
读题后,师生共同完成线段图:
学生独立解答:
137+357=494(千米)
加数加数和
答:北京到济南的铁路长494千米.
提问:
①这道题为什么用加法计算?
②加法是一种什么样的运算?
③要合并的两个数指的是什么数?合并成的一个数指的是什么数?
引导学生明确:要求北京到济南铁路的长度,就要把北京到天津的铁路长137千米和天津到济南的铁路长357千米这两个数合并起来,所以要用加法计算;加法是求两个数合并成一个数的运算;要合并的两个数是137千米和357千米,合并成的一个数是494千米.
启发提问:加法的意义是什么?说说看.
引导学生概括出加法的意义:“把两个数合并成一个数的运算,叫做加法”.
教师板书加法的意义.
练一练
练习十一第1题,应用加法的意义说明各题为什么用加法计算.
在学生独立计算的基础上,教师强调要合并的两个数和合并成的一个数分别指的是什么数,从而让学生更深刻理解加法意义,并会运用它解决实际问题.
(2)教学加法各部分名称.
提问:例1中的137和357在等式中叫什么数?(加数)它们相加得到的494叫什么数?(和)
教师板书.(写在例1算式的下面)
教师联系加法意义说明:相加的两个数也就是要合并的两个数,叫做加数,加得的数也就是合并的结果,叫做和.
反馈提问:你能根据加法的意义说明72+28=100这个算式的各部分名称吗?
(3)加法中有关0的问题.
提问:
①我们例1做的加法,两个加数是什么样的数?(是自然数)
②任何两个自然数相加的和与加数比较会怎样?(相加的和会比原自然数大)
③0和一个自然数相加的和会怎样呢?(0和自然数相加还得原来的自然数)
引导学生讨论:
0的加法可能有哪几种情况?举例说明.
在学生讨论的.基础上,使学生明确:一个数加上0,还得原数.
(4)阅读课本第47页“加法的意义”.
2.教学加法交换律.
根据加法的意义引出加法交换律.
提问:
(1)我们刚才计算例1时,求济南到北京的铁路长用137+357,根据加法的意义还可以怎么算?(还可用357十137)
(2)观察比较一下,这两种解法的结果,能得出什么结论?(可以得出:相加的两个加数交换位置,和不变.也可说出这是两个相等的式子,写成137+357=357+137)
教师指出:我们不能只根据一个例子就得出结论,我们必须多参考几组不同的数目.
(3)出示18+17○17+18
350+150○150+350
274+100○100+274
873+127○127+873
提问:
①观察每组算式有什么关系?○里应填什么符号?
引导学生明确:每组算式里加数是一样的,和也一样,每组两个算式是相等关系,○里应填“=”.
②这几组算式有什么共同特点?你发现了什么规律?
引导学生明确:这几组算式的共同点是,两个数相加,其结果只与加数的大小有关,而与这两个加数的顺序无关.因此可以得出:交换加数的位置,它们的和不变.
教师明确:你们发现的这个规律,就叫做加法交换律.
板书:“两个数……,它们的和不变.”
教师继续指出:上述几组算式说明,每组等式只能表示两个具体的数交换位置和不变,但不能表示任意整数.大家想一想,怎样用字母把加法交换律表示得既简单又清楚呢?
学生看书自学:第48页.
反馈提问:
什么叫加法交换律?怎样用字母公式表示?过去在什么地方应用了这个定律?
教师板书加法交换律的字母公式:
a+b=b+a
引导学生小结出:过去学过的加法的验算方法既可以用交换加数的位置再加一遍,也可以利用原来的竖式从下往上加一遍.
教师指出:学习了加法交换律,可以进行加法验算,要会运用定律.
练一练
现在用你们学过的知识做第48页的“做一做”.
订正题时要说出根据,以进一步巩固加法交换律的概念及其应用.
3.总结.
(1)说一说加法的意义是什么?
(2)什么叫加法交换律?它的字母公式是什么?怎样应用加法交换律?
三、巩固反馈
1.口答.(用加法意义说明算法)
玉门县要修一条公路,已经修了400千米,还有260千米没修,这条公路有多少千米?
2.下面各式哪些符合加法交换律?
140+250=260+130 260+450=460+250
20+70+30=70+30+20 a+400=400+a
3.根据运算定律在“□”里填上适当的数.
(1)□+55=55+42 (2)a+44=□+□
(3)38+35=□+38 (4)48+□=72+□
订正时,要求学生严格按照定义、定律来加以说明.
四、作业
练习十一第2~4题.
板书设计
加法的意义和运算定律
例1 一列火车,从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?
137+357=494(千米)
加数加数和
357+137=494(千米)
答:北京到济南的铁路长494千米.
把两个数合并成一个数的运算,叫做加法.
18+17 17+18
350+150 150+350
274+100 100+274
873+127 127+873
两个数相加,交换加数的位置,它们的和不变.这叫做加法交换律.字母公式:
a+b=b+a
五、教学后记:
学生能理解加法的意义,掌握了、加法的交换律并会用运算定律进行计计算。