《求平均数》教案
作为一无名无私奉献的教育工作者,时常需要用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么应当如何写教案呢?下面是小编精心整理的《求平均数》教案,仅供参考,希望能够帮助到大家。
《求平均数》教案1一、教学目的
1.进一步理解平均数的意义。
2.掌握求较复杂的平均数的解题方法,会根据收集到的数据求平均数。
3.培养学生具体问题具体分析的能力。
4.使学生认识到求平均数这一知识在现实生活中的意义,激发学习兴趣。
二、教学重点
使学生掌握较复杂的平均数应用题的解题方法。
三、教学难点
通过学习,使学生能够找准问题与条件,条件与条件之间相对应的关系,运用所掌握的方法灵活解答相关问题。
教学对象分析
低年级学生思维的基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。
教学策略及教法设计
教学时有意识创设情境,激发学生探索问题的欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的主体作用。
1.多媒体教学
运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的积极性。
2.动手操作法
引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的思维逐渐内化。
四、教学过程
1.复习较简单的.平均数问题
出示复习题。
求平均数需要知道哪两个条件?怎样求平均数?
把复习题稍微改动一下,就是我们今天要学习的较复杂的求平均数问题。
2.学习例题①
(1)指名读题。
(2)启发提问。
①例题①的已知和问题与复习题的有什么不同?
②要求全班平均每人投中多少个,必须先知道什么条件?
③怎样求全班共投中多少个?
怎样求全班共有多少人?
怎样求平均数?,
(3)列综合算式并解答问题。
3.学习例题②
(1)指名读题。
(2)启发提问。
①例题②与刚学过的例题①有什么异同?
②要求全班平均每人投中多少,必须先知道什么条件?
③怎样求全班一共投中多少人?
怎样求全班一共有多少人?
怎样求平均数?
(3)列综合算式并解答问题。
(教师应告诉学生,求得的平均数有时不能恰好除尽,这时只要根据具体情况取近似值就可以了。这道题中已知数只有一位小数,因此得数取一位小数就可以了。)
(4)例题①与例题②有什么不同,解答时应注意什么?
(再次强调例题①与例题②的区别,培养学生具体问题具体分析,防止死套公式。)
4.完成书后“做一做”
五、课堂练习
●基础练习
1.填空。
(1)平均数=( )÷( )
(2)( )×( )=总数量
(3)总份数=( )÷( )
2.选择题。
(1)五年级两个班为希望工程捐款,一班42人共捐168元,二班45人共捐210元,平均每个班捐款多少元?正确列式为 ( )
A.(168+210)÷2 B.(168+210)÷(42+45)
(2)一个工厂前3天烧煤4.8吨:后4天烧煤7.8吨,这个工厂一星期平均每天烧煤多少吨 ( )
A. (7.8+4.8)÷(4—3) B. (4.8+7.8)÷(4+3)
●综合练习
1.劳动实践。
(1)同学们在校办工厂里糊纸盒。第一小组10人,平均每人糊7个;第二小组8人,平均每人糊6个;第三小组5人,平均每人糊4个。三个小组平均每人糊多少个?
(2)春光小学五年级同学参加春季植树,领来白杨树苗140棵,梧桐树苗60棵,桑树苗25棵,共分给5个班种,平均每班种多少棵?
2.下表是四年一班各组同学寒假阅读课外读物情况统计表。全班平均每人看多少本课外读物?(得数保留整数)
各组人数
12
14
13
12
平均每人阅读本数
6
4.5
5
5
●实践与应用
王华同学五次语文、数学单元练习成绩如下:
第一次:语文92.5分 数学100分
第二次:语文88分 数学97分
第三次:语文94分 数学98.5分
第四次:语文98.5分 数学100分
第五次:语文99分 数学97分
先分别算出五次语文、数学两科的平均分,再制成统计表。
王华同学五次语文、数学单元练习成绩统计表
年 月
板书
求平均数
① 五年级一班分成3组投篮球第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?
(1)全班一共投中多少个?
28+33+23=84(个)
(2)全班一共有多少人?
10+11+9=30(人)
(3)全班平均每人投中多少个?
84÷30=2.8(个)
综合算式:(28+33+23)÷(10+11+9)=2.8(个)
答:全班平均每人投中2.8个。
② 下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数。)
各组人数
12
11
10
平均每人投中数
2.5
3
3.2
(1)全班一共投中多少个?
2.5×12+3×11+3.2×10=95(个)
(2)全班一共有多少人?
12+11+10=33(人)
(3)全班平均每人投中多少个? ……此处隐藏17807个字……p>=8346
=139(厘米)
第二小组的平均身高是多少?
(132+141+133+138+145+135+142)7
=9667
=138(厘米)
第一小组的平均身高比第二小组的高多少?
139-138=1(厘米)
答:第一小组平均身高高一些,高1厘米.
(5)反馈练习.
一个小组有7个同学,他们的体重分别是:39千克、36千克、38千克、37千克、35千克、40千克、34千克.这个小组平均体重是多少千克?
三、课堂小结.
通过小结,进一步区分平均分与平均数两个概念的不同含义,巩固求平均数的方法.
四、布置作业.
回家后量出你家中每个人的身高,记录下来,并求出全家人的平均身高.
《求平均数》教案14教学目标
(一)进一步理解求平均数的意义,掌握较复杂的求平均数的方法。
(二)通过题目设计,对学生进行思想品德教育。
(三)培养学生灵活计算的能力和解决实际问题的能力。
教学重点和难点
求平均数的意义及较复杂的求平均数的方法。
较复杂的求平均数的方法。
教学用具
教具:电脑软件、投影片。
学具:判断卡。
教学过程设计
(一)复习准备
1.口算。
①小明有12本书,小军有20本书,小明和小军平均每人有几本书?
②五(3)班做好事28件,五(4)班做好事36件,平均每个班做好事多少件?③五年级一班分成3组投篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每组投中多少个?
由学生自己解答(列式计算)针对第③题提问:
①说出这道题的问题是什么?
②求平均数必须知道什么条件?
③说一说你是怎样计算的?
板书:投中总个数÷组数。
(二)学习新课
1.出示例 1:
五年级一班分成3组投篮球,第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?
读题后,学生分组讨论思考题。(投影片)
①例1和准备题③比较,题目有什么异同?(从条件和问题两方面考虑。)②要求全班平均每人投中多少个,必须先知道什么条件?
在学生回答基础上,板书:投中总个数÷全班总人数。
教师:投中总个数和全班总人数题目中给了吗?怎么办?
②投中总个数和全班总人数知道之后,怎样求全班平均每人投中多少个?
尝试自己列式,然后讨论订正。
板书:
(1)全班一共投中多少个?
28+33+23=84(个)
(2)全班一共有多少人?
10+11+9=30(人)
(3)全班平均每人投中多少个?
84÷30=2.8(个)
教师:综合算式怎样列?(学生试列式,再讨论订正。)
板书:(28+33+23)÷(10+11+9)=2.8(个)
答:全班平均每人投中2.8个。
教师:对比例1和准备题③你能发现解答方法有什么异同吗?为什么会出现这种不同的情况?
2.出示例2:(投影片)
下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数)
教师:例2和例1比较,有什么异同?
明确:例1和例2的问题一样,但已知条件不同。
教师:要求全班平均每人投中多少个,要知道什么条件?(学生试做,然后说出自己的列式和思路,充分讨论,如果有不同意见互相交换,最后弄清怎样是对的。)
板书:
(1)全班一共投中多少个?
2.5×12+3×11+3.2×10=95(个)
由学生完成。
(2)全班一共有多少人?
________________________
(3)全班平均每人投中多少个?
________________________
答:全班平均每人投中________个。
教师:你能列出综合算式吗?
板书:(2.5×12+3×11+3.2×10)÷(12+11+10)。
讨论:对比例2和例1有什么不同?解答时应该注意什么问题?
教师:求平均数时,有时不能除尽,这时需要根据具体情况取近似值。
(三)巩固反馈
1.做一做:
小亮读一本书,前4天平均每天看6.25页,后3天平均每天看8页。小亮这一星期平均每天看多少页?(先说思路,再列式计算。)
2.判断正误并说明理由。
①小李加工一批零件,前2时加工28个,后3时加工36个,平均每时加工多少个?
[ ]
A.(28+36)÷(3+2);
B.(28 × 2+36 × 3)÷(3+2);
C.(28+36)÷2。
②一辆汽车从甲地开往乙地,前5时平均每时行60千米,后3时平均每时行56千米,这辆汽车从甲地开往乙地,平均每时行驶多少千米?
[ ]
A.(60+56)÷(5+3);
B.(60+56)÷2;
C.(60×5+56×3)÷(5+3)。
(四)课堂总结(学生总结)
教师:解答求平均数应用题应注意哪些问题?
①明确问题求的是什么平均数;
②总数量÷总份数=平均数。
(五)布置作业 课本P15:1,2,3,4,5。
课堂教学设计说明
本节课是在较简单的求平均数应用题的基础上进行的。重点是让学生理解并巩固平均数的意义以及求平均数应用题的解题思路和方法,其中加权算术平均数的计算方法是难点。通过准备题与例1的对比突出重点,学生掌握求平均数的方法,同时培养学生分析、比较的`能力。让学生充分讨论、尝试例2,培养学生独立解答问题的能力,从而突破了难点。
本节新课教学分为三部分。
第一部分,教学例1,加深对平均数应用题的解题方法的理解,共分3层。
第一层:由准备题与例1对比,找出异同点;
第二层:由问题出发找出解决问题的方法;
第三层:列出分步和综合算式。
第二部分:教学例2,强调根据题意确定算法,可分3层。
第一层:出示例2,审题找出与例1的异同点;
第二层:分组讨论解题方法;
第三层:列出分步、综合算式。
第三部分:对比例1、例2,找出异同点,从而加深对平均数应用题解题方法的理解。
板书设计(略)