高中数学教案

时间:2024-09-13 23:31:14
高中数学教案(集锦15篇)

高中数学教案(集锦15篇)

作为一位不辞辛劳的人民教师,常常需要准备教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么优秀的教案是什么样的呢?以下是小编整理的高中数学教案,希望能够帮助到大家。

高中数学教案1

[学习目标]

(1)会用坐标法及距离公式证明Cα+β;

(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

[学习重点]

两角和与差的正弦、余弦、正切公式

[学习难点]

余弦和角公式的推导

[知识结构]

1、两角和的'余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

4、关于公式的正用、逆用及变用

高中数学教案2

【课题名称】

《等差数列》的导入

【授课年级】

高中二年级

【教学重点】

理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。

【教学难点】

等差数列的性质、等差数列“等差”特点的理解,

【教具准备】多媒体课件、投影仪

【三维目标】

㈠知识目标:

了解公差的概念,明确一个等差数列的限定条件,能根据定义判断一个等差数列是否是一个等差数列;

㈡能力目标:

通过寻找等差数列的共同特征,培养学生的观察力以及归纳推理的能力;

㈢情感目标:

通过对等差数列概念的归纳概括,培养学生的观察、分析资料的能力。

【教学过程】

导入新课

师:上两节课我们已经学习了数列的定义以及给出表示数列的几种方法—列举法、通项法,递推公式、图像法。这些方法分别从不同的角度反映了数列的特点。下面我们观察以下的几个数列的例子:

(1)我们经常这样数数,从0开始,每个5个数可以得到数列:0,5,10,15,20,()

(2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目工设置了7个级别,其中较轻的4个级别体重组成的数列(单位:kg)为48,53,58,63,()试问第五个级别体重多少?

(3)为了保证优质鱼类有良好的生活环境,水库管理员定期放水清库以清除水库中的杂鱼。如果一个水库的'水位为18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一个数列:18,15.5,13,10.5,8,(),则第六个数应为多少?

(4)10072,10144,10216,(),10360

请同学们回答以上的四个问题

生:第一个数列的第6项为25,第二个数列的第5个数为68,第三个数列的第6个数为5.5,第四个数列的第4个数为10288。

师:我来问一下,你是依据什么得到了这几个数的呢?请以第二个数列为例说明一下。

生:第二个数列的后一项总比前一项多5,依据这个规律我就得到了这个数列的第5个数为68.

师:说的很好!同学们再仔细地观察一下以上的四个数列,看看以上的四个数列是否有什么共同特征?请注意,是共同特征。

生1:相邻的两项的差都等于同一个常数。

师:很好!那作差是否有顺序?是否可以颠倒?

生2:作差的顺序是后项减去前项,不能颠倒!

师:正如生1的总结,这四个数列有共同的特征:从第二项起,每一项与它的前一项的差都等于同一个常数(即等差)。我们叫这样的数列为等差数列。这就是我们这节课要研究的内容。

推进新课

等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示。从刚才的分析,同学们应该注意公差d一定是由后项减前项。

师:有哪个同学知道定义中的关键字是什么?

生2:“从第二项起”和“同一个常数”

高中数学教案3

【教学目标】

1.知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2.过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】

①等差数列的概念;

②等差数列的通项公式

【教学难点】

①理解等差数列“等差”的特点及通项公式的含义;

②等差数列的通项公式的推导过程.

【学情分析】

我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

【设计思路】

1、教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利 ……此处隐藏21583个字……决问题策略的评论,以点明案例的基本论点及其价值。

三、案例研究过程中需注意的问题

1.选材面过窄。从内容上看,多数案例是关于课堂教学甚至局限于一节课的研究,往往不能说明问题,或者在一节课中,也只会从简单的对话分析问题,做不到全方位、多角度。这说明教师对教学情境的丰富性、复杂性和联系性认识不够。

2.缺乏典型性。有的案例对教学实践没有挖掘与反思,随意摘取一些教学片段泛泛而谈、人云亦云,没有实用价值。不能够通过对某一事件现象的分析、处理、诠释,达到举一反三的效果,这样的案例对他人没什么借鉴作用。

3.主题不明确。主要体现为:

(1)主题涣散。有的案例象记流水帐,没有根据需要进行恰当的取舍,看不出作者要反映、探讨什么问题,缺乏指导性、创新性和参考性。

(2)定题过于随意。有的案例直接用案例研究依据的文题为题目,如《“三角函数”教学案例》、《“抛物线”教学案例》等,题目不鲜明、不形象,影响读者的选读和案例的传播。

4.结构不合理。案例作为一种文体,有它自己的写作结构,只有优化案例的结构,才能增强案例的可读性和指导性。如写成一般的教学设计,一般包括“备课思路、教学目标、教学重点、教学方法、课前准备、教学内容、教学过程”等内容;写成教学实录,把一堂课从头到尾详尽地记录下来,再写上作者的看法;重记录轻分析,过程描述多,评析少等等。没有创新,平淡无趣,看不出案例研究和反映的问题。

5.描述与分析脱节。有的案例描述与分析矛盾,让人不知所云;有时反映的是一种观点,分析阐明的是另一种观点,虽然不矛盾,但联系不紧密;有的分析中热衷于抄录教育理论的一些条条,脱离案例描述的事件而空谈理论,显得空泛无物。

高中数学教案14

教学准备

教学目标

熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

掌握两角和与差的正、余弦公式,能用公式解决相关问题。

教学重难点

熟练两角和与差的正、余弦公式的.正用、逆用和变用技巧。

教学过程

复习

两角差的余弦公式

用- B代替B看看有什么结果?

高中数学教案15

教学目标

1.了解映射的概念,象与原象的概念,和一一映射的概念.

(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;

(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;

(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.

2.在概念形成过程中,培养学生的观察,比较和归纳的能力.

3.通过映射概念的学习,逐步提高学生对知识的探究能力.

教学建议

教材分析

(1)知识结构

映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:

由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.

(2)重点,难点分析

本节的教学重点和难点是映射和一一映射概念的形成与认识.

①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;

映射是学生在初中所学的.对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.

②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.

教法建议

(1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.

(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:

(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.

(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.

(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.

教学设计方案

2.1映射

教学目标(1)了解映射的概念,象与原象及一一映射的概念.

(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.

(3)通过映射概念的学习,逐步提高学生的探究能力.

教学重点难点::映射概念的形成与认识.

教学用具:实物投影仪

教学方法:启发讨论式

教学过程:

一、引入

在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.

二、新课

在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)

我们今天要研究的是一类特殊的对应,特殊在什么地方呢?

提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?

让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)

提问2:能用自己的语言描述一下这几个对应的共性吗?

经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)

《高中数学教案(集锦15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式